
UL HPC Users’ session: Mastering big data

Raymond Bisdorff

Université du Luxembourg
FSTC/ILAS

Luxembourg, June 2017

1 / 12

Motivation: Showing a performance tableau

Consider a perfor-

mance table show-

ing the service qual-

ity of 12 commercial

cloud providers mea-

sured by an exter-

nal auditor on 14 in-

commensurable per-

formance criteria.

Legend: 0 = ’very weak’, 1 = ’weak’, 2 = ’fair ’, 3 = ’good ’, 4 = ’very good ’,’NA’ =

missing data; ‘green’ and ‘red’ mark the best, respectively the worst, performances on

each criterion.

2 / 12

Motivation: showing an ordered heat map

The same perfor-

mance tableau may

be optimistically col-

ored with the high-

est 7-tiles class of

the marginal per-

formances and pre-

sented like

a heat map,

eventually linearly ordered, following for instance the Copeland ranking

rule, from the best to the worst performing alternatives (ties are

lexicographically resolved).

3 / 12

How to rank big performance tableaux ?

• The Copeland ranking rule is based on crisp net flows
requiring the in- and out-degree of each node in the
outranking digraph;

• When the order n of the outranking digraph becomes big
(several thousand or millions of alternatives), this requires
handling a huge set of n2 pairwise outranking situations;

• We use instead a sparse model of the outranking digraph,
where we only keep a linearly ordered list of diagonal
multicriteria quantiles equivalence classes with local
outranking content.

4 / 12

Example of sparse outranking Digraph

>>> from sparseOutrankingDigraphs import *

>>> t = RandomPerformanceTableau(numberOfActions=50)

>>> bg = PreRankedOutrankingDigraph(t,quantiles=5)

>>> bg.showDecomposition()

--- quantiles decomposition in decreasing order---

c1. [0.60-0.80[: [’a22’,’a24’,’a32’]

c2. [0.40-0.80[: [’a16’, ’a28’,’a31’,’a40’]

c3. [0.40-0.60[: [’a01’,’a02’,’a05’,’a06’,’a10’,

’a13’,’a15’,’a25’,’a27’,’a35’,

’a36’,’a37’,’a39’,’a41’,’a48’]

c4. [0.20-0.60[: [’a09’,’a14’,’a18’,’a20’,’a26’,

’a38’,’a43’,’a45’,’a49’]

c5. [0.20-0.40[: [’a03’,’a04’,’a07’,’a08’,’a11’,

’a12’,’a17’,’a21’,’a29’,’a30’,

’a33’,’a34’,’a42’,’a44’,’a47’]

c6. [0.00-0.40[: [’a46’,’a50’]

c7. [0.00-0.20[: [’a19’,’a23’]

5 / 12

Sparse versus standard outranking digraph of order 50
Symbol legend

> outranking for
certain

+ more or less
outranking

’ ’ indeterminate

− more or less
outranked

⊥ outranked for
certain

Sparse digraph bg :
Actions : 50
Criteria : 7

Sorted by : 5-Tiling
Ranking rule :

Copeland
Components : 7
Minimal order : 1

Maximal order : 15
Average order : 7.1
fill rate : 20.980%

correlation : +0.7563

Properties of q-tiles sorting result

1. Coherence: Each object is always sorted into a non-empty
subset of adjacent q-tiles classes.

2. Uniqueness: If the q-tiles classes represent a discriminated
partition of the measurement scales on each criterion and
r 6= 0, then every object is sorted into exactly one q-tiles class.

3. Separability: Computing the sorting result for object x is
independent from the computing of the other objects’ sorting
results.

Comment
The separability property gives us access to efficient parallel
processing of class membership characteristics r(x ∈ qk) for all
x ∈ X and qk in Q.

7 / 12

Multithreading the q-tiles sorting & ranking procedures

1. Following from the separability property of the q-tiles sorting
of each action into each q-tiles class, the q-sorting algorithm
may be safely split into as much threads as are multiple
processing cores available in parallel.

2. Furthermore, the ranking procedure being local to each
diagonal component, these procedures may as well be safely
processed in parallel threads on each restricted outranking
digraph G|qk .

8 / 12

Generic algorithm design for parallel processing

from multiprocessing import Process, active_children

class myThread(Process):

def __init__(self, threadID, ...)

Process.__init__(self)

self.threadID = threadID

...

def run(self):

... task description

...

nbrOfJobs = ...

for job in range(nbrOfJobs):

... pre-threading tasks per job

print(’iteration = ’,job+1,end=" ")

splitThread = myThread(job, ...)

splitThread.start()

while active_children() != []:

pass

print(’Exiting computing threads’)

for job in range(nbrOfJobs):

... post-threading tasks per job

9 / 12

HPC performance measurements

digraph standard model sparse model
order #c. tg sec. τg #c. tbg τbg

1 000 118 6” +0.88 8 1.6’ +0.83
2 000 118 15” +0.88 8 3.5” +0.83
2 500 118 27” +0.88 8 4.4” +0.83

10 000 118 7”
15 000 118 12”
25 000 118 21”
50 000 118 48”

100 000 (size = 1010) 118 2’ (fill rate = 0.077%)
1 000 000 (size = 1012) 118 36’ (fill rate = 0.028%)
1 732 051 (size = 3× 1012) 118 2h17’ (fill rate = 0.010%)
2 236 068 (size = 5× 1012) 118 3h15’ (fill rate = 0.010%)

Legend:

• #c. = number of cores;

• g : standard outranking digraph, bg : the sparse outranking digraph;

• tg , resp. tbg , are the corresponding constructor run times;

• τg , resp. τbg are the ordinal correlation of the Copeland ordering with the given
outranking relation.

10 / 12

Gaia-80 November 2016 ranking record

11 / 12

Concluding ...

• We implement a sparse outranking digraph model coupled with a
linearly ordering algorithm based on quantiles-sorting &
local-ranking procedures;

• Global ranking result fits apparently well with the given outranking
relation;

• Independent sorting and local ranking procedures allow effective
multiprocessing strategies;

• Efficient scalability allows hence the linear ranking of very large sets
of potential decision actions (millions of nodes) graded on multiple
incommensurable criteria;

• Good perspectives for further optimization with cPython and HPC
ad hoc tuning.

Python and cython HPC modules available under:
http://github.com/rbisdorff/Digraph3

Documentation: http://charles-sanders-peirce.uni.lu/docDigraph3/

12 / 12

